Enantioconvergent Formal Synthesis of Brefeldin A via Sakai-Catalyzed Cyclization

Pierre Ducray, Bernard Rousseau,* and Charles Mioskowski*

Service des Molécules Marquées, CEA/Saclay, 91191 Gif sur Yvette, France

Received March 23, 1999

Since the isolation of Brefeldin A (BFA) **1** in 1958,¹ much effort has been devoted to its study.² Initially, interesting biological activities including antitumor, antifungal, and antiviral effects, as well as the unique bicyclic macrolactone framework, stimulated synthetic efforts. Since the early 1990s, it has been found that BFA causes rapid redistribution of Golgi proteins into the endoplasmic reticulum, leaving no definable Golgi apparatus, and blocks transport of proteins into post-Golgi compartments in the cell.³ Understanding the mechanism through which BFA acts on the Golgi should help explain how membrane organelles maintain their identity.⁴ To answer this fundamental question, the identification of the biological target of BFA is necessary.

Toward this end, we have developed a synthesis of BFA analogues that can either be linked to a solid support, for affinity chromatography, or, that would incorporate photoactivatable radioactive probes. We report here the synthesis of the key intermediate 3a which could rapidly and efficiently lead to these derivatives, but also to 2 (Scheme 1). The latter could lead, in few steps, to BFA as described by Gais.2f

We developed an enantioconvergent synthesis of optically pure aldehyde 3a starting from racemic pentenal 5 (Scheme 1). A catalytic asymmetric intramolecular hydroacylation of 5 in the first step should lead to optically pure cyclopentanones 4a and 4b in equal amounts.⁵ Indeed, the stereochemistry of the newly created center should only depend on the chirality of the catalyst. (S)-BINAP, as rhodium ligand, should provide (3R) 4a and 4b. The hydroxyl group on this stereogenic center could then be used as a directing group in the asymmetric reduction of the ketone.²ⁿ A highly diastereoselective reduction is expected. Finally, epimerization should transform trans aldehyde 3b into key intermediate 3a.

Racemic pentenal 5 was obtained using a Heck reaction⁶ between vinylic bromide **6** and *cis*-4,7-dihydro-1,3dioxepin (Scheme 2). All attempts to perform this reaction asymmetrically were unsuccessful despite the report of Shibasaki^{6b} who described a similar arylation with 72% ee. This result prompted us to develop the enantioconvergent strategy reported herein. The hydrolysis of 7 with aqueous HCl was followed by treatment with EtSH in a one-pot reaction to afford 8. TBS protection of the hydroxyl group, followed by cleavage of the thioacetal, provided 4-pentenal 5.7

Sakai cyclization using a catalytic amount (0.9%) of cationic Rh[(S)-BINAP]⁺BF₄⁻ proceeded smoothly to afford a 1:1 mixture of trans-(3R,4R)-cyclopentanone 4a and cis-(3*R*,4*S*)-cyclopentanone **4b** in high yield (90%) and with high enantioenrichment (96% for each) (Scheme 3). An efficient transformation into aldehyde 3a was then carried out starting from the **4a** + **4b** epimeric mixture. The hydrogenation of the benzyl ether was followed by the highly diastereoselective reduction of the resulting ketone using sodium triacetoxyborohydride.²ⁿ The primary hydroxyl group in **9a** and 9b was acetylated and the secondary hydroxyl group protected with MEM chloride. After deacetylation, the primary hydroxyl was protected as MTM ether.⁸ The TBS protecting group was then removed, and the resulting hydroxyl group was oxidized with PCC to furnish aldehydes 3a and 3b. Basic treatment converted the cis aldehyde 3b to the thermodynamically favored chiral synthon 3a.

Chloride **13**, corresponding to the side chain moiety, was prepared according to Scheme 4. Lithium acetylide was reacted with (S)-propylene oxide to give an alcohol which was benzyl-protected to afford 11.9 Dihydroboration of

^{*} To whom correspondence should be addressed. E-mail: bernard. rousseau@cea.fr or mioskow@bioorga.u_strasbg.fr. (1) Singleton, V. L.; Bohonos, N.; Ullstrupp, A. J. Nature **1958**, 181,

^{1072-1073.}

<sup>1072-1073.
(2) (</sup>a) Corey, E. J.; Wollenberg, R. H. Tetrahedron Lett. 1976, 51, 4705-4708. Corey, E. J.; Wollenberg, R. H.; Williams, D. R. Tetrahedron Lett. 1977, 26, 2243-2246. Corey, E. J.; Carpino, P. Tetrahedron Lett. 1990, 31, 7555-7558. (b) Baudouy, R.; Crabbe, P.; Greene, A. E.; Le Drian, C.; Orr, A. F. Tetrahedron Lett. 1977, 34, 2973-2976. Greene, A. E.; Le Drian, C.; Crabbe, P. J. Am. Chem. Soc. 1980, 102, 7583-7584. Le Drian, C.; Greene, A. E. J. Am. Chem. Soc. 1982, 104, 5473-5483. Bernades, V.; Kann, N.; Riera, A.; Moyano, A.; Pericas, M. A.; Greene, A. E. J. Org. Chem. 1995, 60, 6670-6671. (c) Bartlett, P. A.; Green, F. R. J. Am. Chem. Soc. 1978, 100, 4858-4865. (d) Koksal, Y.; Raddatz, P.; Winterfeldt, E. Angew. Chem. Int. Ed. Engl. 1980, 19, 472-473. Raddatz, P.; Winterfeldt, E. Angew. Int. Ed. Engl. **1980**, 19, 472–473. Raddatz, P.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. **1981**, 20, 286–287. Marx, K.-H.; Raddatz, P.; Winterfeldt, E. Liebigs Ann. Chem. **1984**, 474–482. (e) Honda, M.; Hirata, K.; Sueka, H.; Katsuki, T.; Yamaguchi, M. *Tetrahedron Lett.* **1981**, *22*, 2679–2682. (f) Gais, H. J.; Lied, T. *Angew. Chem., Int. Ed. Engl.* **1984**, *23*, 145–146. (g) Kitahara, T.; Mori, K. *Tetrahedron* **1984**, *40*, 2935–2944. (h) Nakatani, K.; Isoe, S. Tetrahedron Lett. 1985, 26, 2209–2212. (i) Ueno, K.; Suemune, H.; Saeki, S.; Sakai, K. Chem. Pharm. Bull. 1985, 33, 4021-4025. (j) Trost, B. M.; Lynch, J.; Renaut, P.; Steinman, D. H. *J. Am. Chem. Soc.* **1986**, *108*, 284–291. (k) Hatakeyama, S.; Sugawara, K.; Kawamura, M.; Takano, S. *Synlett* **1990**, 691–693. (l) Nokami, J.; Ohkura, M.; Dan-oh, N., Jakano, S. Synett abor, of 1 of the state of the s (n) Solladi, G.; Lohse, O. J. Org. Chem. **1993**, *58*, 4555–4563.(o) Miyaoka, H.; Kajiwara, M. J. Chem. Soc., Chem. Commun. **1994**, 483–484. (p) Casy, G.; Gorins, G.; McCague, R.; Olivo, H. F.; Roberts, S. M. J. Chem. Soc. Chem. Commun. **1994**, 1085–1086. (q) Carnell, A. J.; Casy, G.; Gorins, G.; Kompany-Saeid, A.; McCague, R.; Olivo, H. F.; Roberts, S. M.; Willetts, A. J. J. Chem. Soc., Perkin Trans. 1 **1994**, 3431–3439. (r) Tomioka, K.; Ishikawa, K.; Nakai, T. Synlett **1995**, 901–902. (s) Kim, D.; Lim, J. I. Tarakawa, K.; Nakai, T. Synlett **1995**, 2026 (b) Users, D. K. Ler, W. W. Tetrahedron Lett. **1995**, *36*, 5035–5036. (t) Haynes, R. K.; Lam, W. W.-L.; Yeung, L. L.; Williams, I. D.; Ridley, A. C.; Starling, S. M.; Vonwiller, S. C.; Hambley, T. W.; Lelandais, P. *J. Org. Chem.* **1997**, *62*, 4552–4553. (u) Argade, A. B.; Haugwitz, R. D.; Devraj, R.; Kozlowski, J.; Fanwick, P.;

Cushman, M. J. Org. Chem. 1998, 63, 273–278.
 (3) (a) Nuchtern, J. G.; Bonifacino, J. S.; Biddison, W. E.; Klausner, R. (b) (a) Future 1989, 323, 226. (b) Donaldson, J. G.; Lippincott-Schwartz, J.; Bloom, G. S.; Kreis T. E.; Klausner, R. D. *J. Cell. Biol.* 1990, 111, 2295– 2306. (c) Lippincott-Schwartz, J.; Donaldson, J. G.; Schweizer, A.; Berger, E. G.; Hauri, H. P.; Yuan, L. C.; Klausner, R., D. *Cell* **1990**, *60*, 821–836. (d) Klausner, R. D.; Donaldson, J. G.; Lippincott-Schwartz, J. J. Cell. Biol. 1992, 116, 1071-1080.

^{(4) (}a) Donaldson, J. G.; Finazzi, D.; Klausner, R. Nature 1992, 360, 350-352. (b) Helms, J. B.; Rothman, J. E. *Nature* **1992**, *360*, 352–354. (c) Peyroche, A.; Paris, S.; Jackson, C. L. *Nature* **1996**, *384*, 479–481. (d) Morinaga, N.; Moss, J.; Vaughan, M. *Proc. Natl. Acad. Sci. U.S.A.* **1997**, 94, 12926–12931. (e) Sata, M.; Donaldson, J. G.; Moss, J.; Vaughan, M. Proc. Natl. Acad. Sci. U.S.A. **1998**, *95*, 4204–4208. (f) Mitchell, R.; McCulloch, D.; Lutz, E.; Johnson, M.; MacKenzie, C.; Fennell, M.; Fink, G.; Zhon, W.; Sealfon, S. Nature 1998, 392, 411-414.

^{(5) (}a) Wu, X. M.; Funakoshi, K.; Sakai, K. Tetrahedron Lett. 1992, 33, (a) Wu, A. Wu, Y. Mu, Yunakoshi, K.; Sakai, K. *Tetrahedron Lett.* 1993, 33, 5927–5930. (c) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.; Whelan, J.; Bosnich, B *J. Am. Chem. Soc.* 1994, *116*, 1821–1830.
(6) (a) Heck, R. F. *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 4, pp 833–862.

⁽b) Koga, Y.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 1227 1230. De Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379 - 2411

^{(7) (}a) Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1977, 68. (b) Fetizon, M.; Jurion, M. J. Chem. Soc., Chem. Commun. 1972, 382.

⁽⁸⁾ Corey, E. J.; Bock, M. G. Tetrahedron Lett. 1975, 38, 3269-3270. (9) Takano, S.; Setoh, M.; Ogasawara, K. Tetrahedron: Asymmetry 1992, 3. 533-534

conc., 0°C, 10 min, then rt 35 min; d) TBSCI, DMAP, imidazole, CH₂Cl₂, 0°C 30 min, then rt 30 min, 1h; e) Mel, Na₂CO₃, acetone/water, 65°C, 8h.

a) Rh{(S)-BINAP}BF4, CH₂Cl₂, rt, 3h, 96% ee; b) H₂, Pd/C, dioxane, rt, 1.5h; c) NaBH(OAc)₃, AcOH, THF, rt, 22h, 97% de; d) AcCl, NEt₃, DMAP, THF, 0°C, 2h; e) MEMCl, Pr_2 EtN, CH₂Cl₂, rt, 16h; f) MeONa, AcOA, AcOA CeHe/CH3OH, 0°C, 30 min then rt, 3h; g) NaH, DME, Nal, MTMCI, 0°C 2h; h) TBAF, THF, 0°C 1h then rt 1.5h; i) PCC, KOAc, CH₂Cl₂, rt, 45 min; j) Na₂CO₃, MeOH, rt, 5h; k) Me₃SMeSO₄, NaOH/CH₂Cl₂, rt, 20h; l) 13, Li metal, Et₂O/THF, -70°C then rt, 4h.

a) C₂HLi-EDA, DMSO, rt, 4h; b) NaH, THF, rt, 45 min then BnBr, rt, 2h; c) 9-BBN, THF, rt, 18h then aq, NaOH, H₂O₂; d) (COCl)₂, DMF, CH₂Cl₂, rt, 12 min, then **11a**, reflux, 1.5h e) H₂, Pd/C, CH₂Cl₂, rt, 3h; f) DHP, PPTS, CH2Cl2, rt, 4h.

acetylene 11 and oxidation of the reaction mixture with alkaline hydrogen peroxide¹⁰ afforded primary alcohol 12 which, upon treatment with oxalyl chloride, furnished the corresponding chloro compound. Debenzylation followed by THP protection afforded 13.

Condensation of aldehyde 3a with trimethylsulfonium methyl sulfate, under phase transfer conditions, gave the desired epoxide 10 (Scheme 3).¹¹ Reductive alkylation of 10 with the organolithium reagent¹² derived from halide 13¹³ afforded, with concomitant regeneration of the hydroxyl function, olefin 2. The stereoselectivity of this process is better than that of classical olefination methods applied to BFA syntheses (E/Z = 90/10).

A formal, catalytic, and enantioconvergent synthesis of BFA is reported. Our approach utilizes, as the key steps, an asymmetric Sakai cyclization and a reductive alkylation of epoxide rendering this approach particularly attractive despite the large number of total or partial syntheses of (+) BFA described in the literature. This allows the conversion of racemic 5 into an optically pure product using only 0.9% of a chiral catalyst. These two reactions were, for the first time, applied to the total synthesis of a natural product.

Acknowledgment. We warmly thank Drs. François Képès, Catherine Jackson, and Eric Doris for hepful discussions. We also thank Ms Florence Pillon, Mrs Alain Valleix, Franck Sobrio, and Dr. Patrick Berthault for running important control experiments.

Supporting Information Available: Experimental procedures, characterization data, and ¹H and ¹³C spectra for all compounds including unnumbered intermediates. This material is available free of charge via the Internet at http://pubs.acs.org.

JO990507W

⁽¹⁰⁾ Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96-99.

⁽¹¹⁾ Mosset, P.; Grée, R. Synth. Commun. 1985, 15, 749-757 (12) Doris, E.; Dechoux, L.; Mioskowski, C. Tetrahedron Lett. 1994, 35, 7943-7946

⁽¹³⁾ Gardette, M.; Alexakis, A.; Normant, J. F. Tetrahedron 1985, 41, 5887-5899